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Abstract 
 

Modern theories of gravity predict ripples in space and time, which are known as 
gravitational waves.  Very large interacting masses, such as binary systems of neutron stars or 
black holes, are predicted to generate gravitational waves that may be intense enough to be 
detected.  This study presents a response analysis for the proposed gravitational wave experiment 
known as the Laser Interferometer Space Antenna (LISA).  The analysis focuses on the 
gravitational wave distortion patterns, or polarizations, predicted by the Brans-Dicke Scalar-
Tensor Theory of Gravity (BD).  Several plausible metric theories of gravity, such as BD, predict 
gravitational wave polarizations that differ from the traditionally expected polarizations 
predicted by General Relativity (GR).  LISA, a cooperative venture between the National 
Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), is a 
proposed space-based gravitational wave experiment with the potential to distinguish between 
polarizations of gravitational waves.  LISA is scheduled for launch in 2012; so much of the 
current work for LISA involves the development and design of systems and procedures that will 
allow LISA to attain its desired performance.   

For a gravitational wave experiment, the projected sensitivity is determined by an 
instrument response function, which relates the disturbance generated by the gravitational wave 
to the disturbance that can be measured by the instrument.  This study compares the response 
functions for BD polarizations to the published response functions for GR.  Response functions 
corresponding to several different methods of data collection were analyzed.  The analysis 
revealed that each response function depends strongly on the polarization, frequency, and 
propagation direction of the gravitational wave.   

To numerically evaluate and compare the response functions two programs were 
generated in the MATLAB® programming language.  The first program computes the response 
functions averaged over all source directions for each gravitational wave polarization and data 
collection method.  The second program calculates the instrument response at each point in 
LISA’s orbit to gravitational waves originating from the galactic center.  The results from the 
programs generated in Matlab identify patterns in the response functions that distinguish between 
gravitational waves of BD and GR polarizations.  These results identify features of the response 
functions that may assist future researchers in determining the optimal data collection method to 
detect gravitational waves of a given polarization, frequency, and source direction. 
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Introduction 

 

The discovery and analysis of gravitational waves promises to usher in a new age of 

astronomy.  Nearly all astronomical data are gathered from electromagnetic radiation emitted by 

accelerated electrical charges in distant stars.  The detection and subsequent analysis of radiation 

emitted by accelerated mass would provide a new probe of the universe and its structure.   

The apparent parallels between the gravitational interaction and the electromagnetic force 

have long been recognized.  The most obvious parallel is the similarity between Isaac Newton’s 

Law of Universal Gravitation and Charles Coulomb’s Electrostatic Force Law: 

 

2
21

r
mGm

Fg =       (1) 

2
21

r
qkqFe =       (2) 

 

Both equations involve a constant (G or k) multiplied by a fundamental quantity (mass 

and charge) of two objects, and divided by the distance separating the objects squared.  Until the 

20th century, no one considered searching for a gravitational radiation similar to electromagnetic 

radiation but generated by the acceleration of mass.  Because Newton’s theory of gravity fails to 

support the wave equation necessary for the existence of gravitational radiation, a search for 

gravitational radiation was not merited until the general theory of relativity was published in 

1915 [1].   

In Newton’s theory, gravity is considered to be a force that is experienced 

instantaneously, that is to say that if the Sun were to suddenly vanish, the earth and all the other 
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planets would immediately depart their orbits and head for deep space with the velocity they had 

the moment the sun vanished.  Einstein departed from the instantaneous gravitational effect 

intrinsic to Newton’s theory by assuming that no information, including the gravitational 

interaction, could propagate faster than the speed of light in vacuum, which he assumed as 

invariant [2].   

Einstein thoroughly explored the consequences of assuming the speed of light to be a 

constant, and published the results of his investigation in 1905 in his Special Theory of Relativity 

[1].  Special relativity allows one to find the relationship between measurements made in two 

inertial reference frames.  To illustrate the concept of special relativity (See Fig. 1), consider a 

situation where Bob stands on a flatbed railcar with a timepiece that consists of light that 

bounces between two mirrors. 

 

d

v

Reference Frame A

d

v

Reference Frame A

 

Figure 1:  In reference frame A, Bob observes a timepiece consisting of a photon bouncing 
between two mirrors.   

 

Light has the special property that it travels through space at a constant rate (c) that does 

not depend on the motion of the source or receiver.  As the light completes one round trip, Bob 

(in reference frame A) will observe the light traveling a distance d2  in the time t, 
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where c
dt 2= .  Meanwhile, in reference frame B, Alice stands on the ground and watches the 

flatbed car travel by her at a velocity v (See Fig. 2). 

 

d
v

Reference Frame B

vT

d
v

Reference Frame B

vT

 

Figure 2: In reference frame B, Alice observes the path taken by a photon traveling between two 
mirrors that are moving relative to her position.  
 

Alice observes the light traveling a distance greater than 2d as it makes a round trip.  

Consequently, she notices more time has elapsed between the same two events that Bob 

witnessed in Reference Frame A.  Though the amount of time observed between two events is 

dependent upon the reference frame, Einstein concluded that the right mixture of space and time, 

referred to as the spacetime interval, does not depend upon the reference frame.  The spacetime 

interval and the principle that there is no preferred frame or observer are the essence of special 

relativity.  The invariant interval is given by the equation: 

 

22222 )(ctzyxs ∆−∆+∆+∆=∆ .    (3) 

 

Therefore, light in all reference frames propagates between spacetime points separated by 

a null interval (∆s2 = 0).  Special relativity is only valid for reference frames that are moving at 
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constant velocities and does not account for gravitational effects.  In order to apply the precepts 

of relativity to a gravitational context, Einstein used what is called the equivalence principle [2].   

To begin, Einstein surmised that the effects of gravity were no different than the effects 

experienced in an accelerated reference frame.  For example, consider the two reference frames 

illustrated in Fig. 3. 

 

Earth

(A) (B)

gg

Earth

(A) (B)

gg

 

Figure 3: A rocket ship blasts upwards so an observer would witness laser light inside the 
spacecraft following a curved line (A).  The acceleration due to the gravitation of the earth causes 
light to bend in the same manner as seen on an accelerating spacecraft (B).  

 

The two reference frames consist of identical rooms; one room located on a spacecraft 

accelerating upwards at 9.8 m/s2 and the other room located at the surface of the earth where the 

gravity causes a free fall acceleration of 9.8 m/s2.  In both rooms a laser at the left end of the 

room shoots a beam that hits the right side of the room. Because the rocket in reference frame A 

accelerates up during the time the laser light travels across the room, the path of the light appears 

to bend so that it impacts the wall on the right side of the room at a point lower then the initial 

height of the laser.  The equivalence principle asserts that a gravitational field will have the same 

effect on the laser beam.  Einstein realized that the path taken by the laser could be described by 

a geodesic curve in spacetime.  He was then able to create the general theory of relativity by 

developing equations that describe how matter influences the geometry of spacetime while the 
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geometry of spacetime influences the motion of matter [1]. The equations Einstein developed, 

known as field equations, are analogous to Maxwell’s equations for electromagnetism, and they 

predict the wave equation that Newton’s theory did not support.   

Because Einstein’s theory describes gravity in terms of the geometry of spacetime, it is 

referred to as a metric theory of gravity.  After studying Einstein’s approach to gravity, several 

other scientists have developed alternative metric theories that describe the connection between 

matter and spacetime curvature differently.  In the 1960’s Carl Brans and Robert Dicke 

published a scalar-tensor theory of gravity [3].  The Brans-Dicke theory (BD) was developed to 

incorporate Mach’s principle into Einstein’s theory of gravity.  Mach’s principle asserts that the 

inertial properties of matter are dependent upon the total distribution of matter in the universe 

[3].  The essential result of BD is that the gravitational “constant” G is not constant, but 

dependent upon the totality of matter in the universe and can vary from place to place and time to 

time [3].  In general, BD and other alternative theories agree with the results of GR when the 

gravitational field is relatively weak, such as within the solar system.  However, as the 

gravitational field becomes stronger, the mathematical description of spacetime curvature 

becomes increasingly complicated, and the predictions of alternative theories diverge from the 

predictions of GR [4].  Gravitational waves with sufficient amplitude for detection are only 

created within the strongest gravitational fields.  As a gravitational wave leaves the strong field, 

the persisting polarization and frequency of the wave contains information on the nature of the 

strong field produced by the source.  Because it is not possible to send a gravitational experiment 

to the surface of a distant neutron star or black hole where the gravitational field is recognized as 

strong, the properties of the gravitational interaction in the strong field are not well known.  The 

detection and analysis of gravitational waves may be the first test to validate theories that differ 



9 

from GR only in the limit of the strong field [5].  Gravitational wave detection stands as the long 

awaited window into the nature of the strongest gravitational fields. 

 Theoretically, gravitational waves originate with any acceleration of mass; however, due 

to the weak nature of the gravitational interaction, only the most intense accelerations of the 

densest matter will result in gravitational waves that may be measurable [6]. Binary systems of 

neutron stars or black holes are likely to produce gravitational waves of sufficient strength to 

measure [7].  Gravitational waves act to stretch or shrink the space that they travel through in 

predictable patterns.  Consequently, objects in the path of a gravitational wave will experience a 

compressive or tensile strain, and the distances between objects will either decrease or increase.  

Strain is measured by the change in length over the original length (∆L/L).   The distortion 

pattern, or polarization, of the gravitational wave determines the direction an object will be 

strained, and similarly the direction objects will move in relation to one another.  GR predicts 

two polarizations, which are known as the plus and cross polarizations [8].  In addition to the two 

polarizations predicted by GR, BD predicts the existence of a third polarization, designated here 

as the scalar polarization [6].  All three polarizations cause spatial strains that are transverse 

relative to the direction of propagation.  Figure 4 depicts how a gravitational wave with a plus 

polarization would affect a group of masses arranged in a circle.  The distortion pattern is 

mapped out over one period in the gravitational wave. 
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0 3Τ/4Τ/4 Τ

Plus Polarization
Propagation Direction Out of the Page 

Τ/20 3Τ/4Τ/4 Τ

Plus Polarization
Propagation Direction Out of the Page 

Τ/2  

Figure 4:  The strain pattern exhibited by the plus polarization in one cycle of a gravitational wave 
illustrated in a series of snapshots.  The numbers below each snapshot indicate the progression of 
the gravitational wave through a single cycle - zero indicates the beginning of a cycle and T 
indicates the end of the cycle.  [6] 

 

The cross polarization behaves similarly although the strain pattern is rotated by 45 degrees 

about the direction of propagation.   

 

Cross Polarization
Propagation Direction Out of the Page 

0 3Τ/4Τ/4 ΤΤ/2

Cross Polarization
Propagation Direction Out of the Page 

0 3Τ/4Τ/4 ΤΤ/2  

Figure 5:  The strain pattern exhibited by the cross polarization through one cycle. [6] 

 

Finally, the scalar polarization acts as a breathing mode causing a tensile strain in all transverse 

directions followed in time by a compressive strain. 
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Scalar Polarization
Propagation Direction Out of the Page

0 3Τ/4Τ/4 ΤΤ/2

Scalar Polarization
Propagation Direction Out of the Page

0 3Τ/4Τ/4 ΤΤ/2  

Figure 6: The strain pattern exhibited by the scalar polarization through one cycle. [6] 

 

The illustrations of the three polarizations are helpful to visualize the strain pattern of a 

gravitational wave; however, they in no way indicate the amplitude of the wave.  Known systems 

of binary neutron stars are predicted to produce gravitational waves that will reach earth with a 

strain amplitude, a fractional change in length over length, on the order of 10-21 [7], which is the 

approximate design sensitivity for LISA.  Such a gravitational wave will change the length of a 

thousand kilometer ruler by about the diameter of a proton.  Two approaches have been explored 

to detect such a small strain.  The first involves a solid aluminum bar designed to “ring” when a 

gravitational wave with a particular frequency travels through it.  If the aluminum bar’s 

fundamental mode of vibration has a frequency that matches that of the gravitational wave, then 

each passing phase of the gravitational wave will add to the vibrational energy of the bar in a 

resonance effect.  The resulting vibrational strain in the bar could, in theory, be several orders of 

magnitude greater then the amplitude of the incident wave.  However, no bar detector has 

verifiably detected a gravitational wave [9]. 
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The second approach uses lasers to measure changes in the distance between points in 

space that are marked off by proof masses.  The proof masses can be thought of as points on the 

circles used to illustrate the different polarizations.  For ground based experiments the proof 

masses define points at the end of arms that are mutually perpendicular to one another  

(See Fig. 7).  

 

Ground Based Interferometer 

Laser

Detector

Beam Splitter

Lx

Ly

Lx + ∆Lx

Ly - ∆Ly
Proof Masses

Laser

Detector

Beam Splitter

Lx

Ly

Lx + ∆Lx

Ly - ∆Ly
Proof Masses

 

Figure 7:  A depiction of an earth based gravitational wave interferometer.  As the gravitational 
wave warps the space containing the interferometer the lengths of the respective arms will shrink 
or grow by an amount dictated by the amplitude, polarization, and propagation direction of the 
gravitational wave. [9] 
 

A laser beam is sent through a beam splitter and directed down two paths that are equal in 

length (Lx and Ly).  This setup will be referred to in this report as the two-arm Michelson mode 

of detection.  The beams reflect off the proof masses and recombine at the beam splitter where 

they are directed to a detector.  The intensity of the light measured at the detector is related to the 

difference in the lengths of each arm, |Lx - Ly|.  If both paths are exactly equal in length then the 

beams will destructively interfere and the detector will measure an intensity minimum.  If one 

path is longer then the other by half of the wavelength of the laser light, then the beams will 

constructively interfere and the detector will measure an intensity maximum.  The shift from an 



13 

intensity minimum to maximum is known as one-half of an interference fringe shift.  The ground 

based interferometer experiments are limited by the length of the arms (approximately 4 km) and 

by seismic noise which disturbs the instrument causing false signals [9].  A similar 

interferometer built in space could have arm lengths nearly 500 times the diameter of the earth 

and would not be subject to seismic noise [7].   

 The design and construction of a space-borne interferometer known as the Laser 

Interferometer Space Antenna (LISA) is currently being led by the National Aeronautics and 

Space Administration’s Goddard Space Flight Center.  In the LISA design, spacecraft will 

occupy the vertices of an equilateral triangle 5 million kilometers on a side.  The significant 

increase in path length reduces the fractional change necessary to give a fringe shift.  As a result, 

the effective detection band is shifted to lower frequencies.  LISA is designed for the 10-4 to 100 

Hertz band.  The triangle will follow the earth in its orbit and will rotate clockwise as it revolves 

around the sun [7] (See Fig. 8). 

 

 

     

A     B 

Figure 8: These pictures illustrate the LISA configuration.  Picture A illustrates how each spacecraft 
follows its own orbit about the sun so that the three spacecraft will maintain relative positions at the 
vertices of an equilateral triangle throughout the course of a complete revolution about the sun.  
Picture B shows the location of the LISA configuration relative to the earth’s orbit [10]. 
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Each spacecraft contains a laser and proof masses so the constellation of three spacecraft 

can operate as one instrument on the same principle as the ground based experiments.  Because 

each spacecraft in the LISA setup contains an interferometer, the data gathered from the fringe 

shifts measured at the detectors can be related to several different combinations of the arm 

lengths [11].   

 

L1

L2L3

x

y

A

B

C

L1

L2L3

x

y

A

B

C

 

Figure 9:  The LISA reference frame defined in this study.  L1, L2, and L3 represent the lengths of 
each arm.    

 

For example, in reference to Fig. 9, spacecraft A will collect data corresponding to |L1-

L3|, while spacecraft B will collect data corresponding to |L1-L2|, and so on.  Data transmitted to 

earth can be reprocessed to yield other combinations including permutations of |L1+L2-2L3| and 

|L1+L2+L3| [11].  The different kinds of combinations will be referred to in this paper as modes 

of data collection.  Four modes of data collection are examined in this study.  The first mode 

evaluates the response of a single arm, the second computes the LISA equivalent to the two-arm 

Michelson mode that is used in earth based detectors.  The two arm Michelson is defined by |L1-

L2|.  The third mode is a result of combining the results of two independent two arm Michelson 

responses.  It is referred to as the three-arm Michelson mode and is defined by |L1+L2-2L3|.  

The final mode utilizes the LISA setup as a Sagnac interferometer so it is appropriately titled the 

Sagnac mode and is designated as |L1+L2+L3|.   
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 Determining the sensitivity of each mode of data collection to gravitational waves of 

various frequencies, source directions and polarizations is an essential part of the LISA program.  

Several groups have published studies of LISA’s sensitivity to the gravitational wave 

polarizations predicted by GR [7, 11, 12]. Other groups have reported that no experiment to date 

provides data to exclude scalar-tensor theories like BD.  The following report is the first to 

explore the response of LISA to the additional gravitational wave polarization predicted by BD.   
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Methods 

 

The sensitivity of LISA can be calculated through a combination of two functions; a 

noise function and a response function.  The noise function is a measure of the equivalent strain 

induced by instrument noise.  Self gravity noise, residual gas damping and minor fluctuations in 

the laser amplitude and frequency can simulate strain that could be mistaken for a passing 

gravitational wave [11].  The response function relates the strain produced by a gravitational 

wave to the time delay experienced by the beams propagating between pairs of spacecraft in the 

LISA system.  The two functions are combined to form a plot used to determine the signal to 

noise expected for LISA.   

 The noise function is dependent only upon instrument parameters and the detector 

environment.  Neither the polarization nor the frequency nor any other aspect of a gravitational 

wave shows up in the noise function.  Consequently, every study of LISA’s sensitivity, 

regardless of the polarization or source direction examined should contain the same noise 

function.  Therefore, the main focus of this study is to develop and analyze the response function 

of LISA for the scalar polarization predicted in BD.   

 Systems engineers are often concerned with developing a mathematical formula that 

relates the input to a system to the expected output.  The formula sought is often referred to as a 

transfer function.  A response function is very similar to a transfer function in the way it relates 

the gravitational wave, which may be considered the input, to the spatial strain experienced by 

the laser light traveling between two spacecraft.  To better understand the response function, 

consider an analogous situation involving corks floating on a pond.     
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Figure 10:  The distance between two corks changes as they bob up and down on waves across a 
pond.  The green line represents a hypothetical rubber band used to measure the changes in 
distance between the corks. 

 

A lightweight rubber band stretched between the corks stretches as a wave on the pond 

causes the corks to move up and down.  If details of the wave moving the corks are known, i.e. 

the amplitude, frequency, direction and speed, then it would be possible to generate a 

mathematical model to calculate how much the rubber band will stretch when disturbed by a 

passing wave.  The response function is the backbone of such a model because it is able to 

incorporate the effects of different frequencies and source directions of the incident wave.  A 

wave originating from the right or left of the corks depicted in Fig. 10 would produce a response 

that varies in time.  In the case where the waves were originating from above or below the page 

(Fig.11), both corks could simultaneously be at the crest or the trough of the wave and the rubber 

band would not stretch at all.  
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Figure 11: The direction of the incident waves affects how the distance between the corks changes.  
In this picture, the waves are rolling into the page while both corks are bobbing up and down in 
unison.   

 

The situation in which the rubber band does not stretch is termed a null response.  The 

frequency of the wave may also produce a null response; in fact, as the frequency of the wave 

increases, the wavelength will become shorter until it matches the distance between the corks.  

At that point both corks would reside on different crests and the rubber band would not be 

stretched (Fig. 12).  The response function should indicate a series of null responses as the 

frequency continues to increase and the distance between the corks becomes equal to integer 

multiples of the wavelength. 

 

 

Figure 12:  The frequency of incident waves also affects the response function.  The distance 
between corks does not change because the corks float on the same location of different wave 
crests.   
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Before an equation can be developed to describe the response function of LISA, the 

gravitational wave must be described mathematically.  A gravitational wave can be 

approximated as a perturbation of spacetime, so the description of a gravitational wave must 

begin with the description of spacetime.  A relatively small region of space and time can be 

considered flat to a first order approximation.  The spacetime interval for a flat region may be 

calculated using the metric of special relativity (See Eq. 3) written here in differential form: 

 

22222 dtdzdydxds −++= , 1=c .                      (4) 

 

The spacetime interval may also be written in metric form;  
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The flat metric 
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 is symbolized as ηµν, where µ and ν are indices that range in value from 0 

to 3 [8].  Therefore,   
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Using Einstein’s summation notation, the summations over µ and ν are implied by the repeated 

indices and no ∑ is used;  

 

       νµ
µνη dxdxds =2 .                     (7) 

Equation 7 can then be modified to represent a gravitational wave.  For example, the spacetime 

interval for a perturbation to flat spacetime by a transverse gravitational wave propagating along the 

z axis is given by  

 

νµ
µνµνη dxdxhds )(2 += .   (8) 

 

Here the perturbation matrix is:  
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For the sake of simplifying the notation, coefficient matrices will be denoted with a capital letter, 

i.e.  

 

)cos( δθµνµν += AHh .             (10) 
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The amplitude, A, of the perturbation must necessarily be much less than one, which is consistent 

with predicted strain amplitudes of gravitational waves (on the order of 10-21).  In matrix form, 

the coefficients of the perturbation matrices for the cross, plus, and scalar polarizations in the 

source frame are given below.  
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GR predicts only the cross and plus polarizations, while BD predicts all three.  The term 

‘source frame’ is in reference to the orientation of the coordinate axes at the source, where the z 

axis is reserved for the direction of propagation.  It is important to note that LISA must be 

described by a set of coordinate axes that are independent of those in the source frame  

(See Fig. 13).   
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Figure 13:  An illustration depicting the relationship between the source, heliocentric, and LISA 
reference frames.  Zs indicates the z axis of the source frame while Zh, and ZL indicate the z axes 
of the heliocentric and LISA frames respectively.   
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Ignoring the orbital motion around the sun and assuming LISA remains fixed in space, 

two rotations are required to transform from the source frame to the LISA frame.  An additional 

three rotations are required when taking the orbital motion of LISA into account [7].  The 

process of calculating the transformations is outlined in appendix A.  It is important to note that 

the rotations only affect the coefficient matrix. 

With the description of the gravitational wave in the LISA coordinate frame, it is possible 

to investigate how the wave influences the spacetime traveled by the laser beams passing 

between the spacecraft.  The light travels along a null geodesic, which is a path in spacetime 

where the spacetime interval is equal to zero. 

 

νµ
µνµν δωη dxdxrktAH ))cos((0 +⋅−+=

rr
, rkt rr

⋅−= ωθ .  (11)  

 

Here k
r

 is the vector associated with the propagation direction and wavelength of the 

gravitational wave, rr is the vector associated with the distance traveled by the light along an arm 

of LISA, and δ is a phase constant.  Allowing A to equal one will produce a response function 

that indicates the fraction of the wave’s amplitude that is measured by the detector.  The light 

travel time between spacecraft, τ, is approximately 16 seconds.  For waves with periods shorter 

than 16 seconds, the space is alternately stretched and compressed as the light pulse travels 

between spacecraft. The result is a roll-off in the response for frequencies above 10-1 Hz.   

Separating the time component from the space components yields 
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The subscripts n and m are indices that range from 1 to 3, and include only the spatial 

components of the matrices.  Taking the square root of both sides allows for an integration of the 

light travel time.  Because the perturbations to spacetime are small, the binomial expansion may 

be employed to rid the integral of the radical. 
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The integral on the right hand side is evaluated over the spacetime path of a light pulse traveling 

along the arm of LISA being examined.  Note that dx, dy, and dz can be defined in terms of the 

original length of the arm when the LISA frame is defined (See Fig. 14).   

 

L1

L2L3

x

y

A

B

C

α

α

L1

L2L3

x

y

A

B

C

α

α

 

Figure 14:  The LISA frame.  For an integration along L1: dx = dt cos(α), dy = dt sin(α), and 
 dz = 0. 
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The response function reflects the time delay for light traveling an arm of LISA and is therefore 

given by: 
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−
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 The remaining integral may be solved analytically. 
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Results 

 

For this study, MATLAB was used to produce two programs to numerically evaluate and 

compare response functions generated with respect to the three different polarizations predicted 

by BD.   The first program computes the response functions for each polarization and data 

collection mode by averaging over all incident source directions.  The second program calculates 

the instrument response to gravitational waves originating from the galactic center as LISA 

orbits the sun.   

To validate the mathematics and programming employed to calculate the response 

functions, the results of the two-arm Michelson to GR polarizations computed by the averaging 

program were compared to those published by Larson, Hiscock, and Hellings (LHH) in 1999 

(See Fig. 15).  Minor discrepancies between the plots are the result of different approaches and 

mathematical approximations.  The LHH study involved a complicated approach to calculate the 

detector response in terms of the power of the gravitational wave, while the approach taken in 

this study determines the response in terms of the amplitude of the gravitational wave.  In 

addition, the LHH approach assumes a slightly different arm length reflected as a small shift 

along the log (u) axis.  The logarithmic plot of the power response for this study (illustrated in 

Figure 15) was generated by taking the log of the square of the amplitude. 
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Figure 15: The averaged power response for GR polarizations interacting with LISA in the Two 
Arm Michelson mode found in this study (top) is compared to the power response of LISA 
published by Shane Larson,  William Hiscock and Ronald Hellings in 1999 (bottom) [11].  The 
variable u represents the angular frequency (2πf).   
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Once it was established that the program could produce reliable results, plots of the 

averaged LISA response to the scalar polarization were generated for comparison to the averaged 

LISA response to GR polarizations.  The response functions were generated for each mode of 

data collection, which includes the single arm mode, the two-arm Michelson mode, the three-arm 

Michelson mode, and the three-arm Sagnac mode.  The calculated averaged response functions 

are presented as Figures 16 - 19. 

-4 -3 -2 -1 0 1 2
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Averaged Response in Single Arm Mode

Log (u)

Lo
g 

R
(u

)

GR Polarizations
Scalar Polarization

 

Figure 16: The single arm response. 

 

The comparative response functions are built on the assumption that the amplitude of the 

scalar polarization is equal to the amplitude of the GR polarizations, although most theories 

predict a smaller amplitude for the scalar wave.  Figure 16 indicates the averaged scalar response 

is stronger than the averaged GR response in the single arm mode.  The stronger scalar response 

is a direct result of the symmetry of the scalar polarization, which results in fewer null responses 

associated with the source direction of the gravitation wave.   
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Figure 17: The two-arm Michelson response. 

 

The two-arm Michelson mode enhances the response to GR polarizations for low 

frequencies while suppressing the scalar response.  The results are intuitively clear considering 

GR polarizations act to stretch one arm while shrinking the second causing a greater difference 

in arm-lengths.  The scalar polarization in low frequencies acts to stretch or shrink both arms 

simultaneously, thereby minimizing the difference in arm-lengths.  A similar argument can be 

posed for the three-arm Michelson mode (See Fig. 18).  However, it is also important to note that 

at high-frequencies for which the wavelengths of gravitational waves are shorter than the arm 

length of the detector, the periodic cancellations that reduce the response to the GR polarizations 

provide a relative enhancement for the response to the scalar polarization.  As the program 

calculates the response function it assumes an initial phase of the gravitational wave at the 

detector.  Because the phase of the gravitational wave producing the maximum response is 

unknown, the program increments this phase, finding and storing the maximum, which is the 

amplitude of the sinusoidal response.   
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Figure 18:  The three-arm Michelson response.. 
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Figure 19: The three-arm Sagnac response. 
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The three-arm Sagnac mode provides the greatest response to the scalar polarization.  

Though the response function suggests the three-arm Sagnac mode is the most likely to detect a 

scalar gravitational wave, a complete sensitivity analysis of LISA requires an examination of the 

noise in the three-arm Sagnac mode, which may be significantly greater than the noise in the 

Michelson modes.   

The LISA response to gravitational waves from a particular direction in the sky will vary 

as the detector orbits the sun.  In order to examine the response of LISA to gravitational waves of 

various frequencies and polarizations originating from the center of the galaxy, a three 

dimensional plot was generated for each mode of data collection.  For each three dimensional 

plot, the abscissa was chosen to indicate orbital position ranging from 0 to 360 degrees.  The 

ordinate indicates the log of the angular frequency of the incident gravitational wave (log (f), 

where f is measured in Hz); and the log of the magnitude of the response is plotted on the z axis.  

The comparative plots for each mode of data collection are presented as Figures 20 - 24.   

 Figure 20 displays the single arm response for each arm of LISA to GR gravitational 

waves originating from the direction of the galactic center.  The fluctuations in the response 

throughout the orbit depend heavily upon the initial orientation of each arm.  L1 exhibits a fairly 

uniform response across the orbital, so it was chosen for a comparison with the single-arm mode 

response to scalar gravitational waves (See Fig. 21). 
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Figure 20:  Single arm response functions for averaged GR polarizations propagating from the 
galactic center. 

 

 

Figure 21:  Single arm response functions for the scalar and averaged GR polarizations 
propagating from the galactic center. 
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Figure 22: The two-arm Michelson response functions for the scalar and averaged GR 
polarizations propagating from the galactic center. 
 

The response functions plotted for the two-arm Michelson mode (See Fig. 22) indicate 

that the maximum responses to low-frequency scalar gravitational waves will occur at orbital 

positions that differ from those exhibiting the maximum responses to GR polarizations.  The 

separation of maximum-response locations provides a distinguishing feature when the source 

location is known.   
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Figure 23: The three-arm Michelson response functions for the scalar and averaged GR 
polarizations propagating from the galactic center. 
 

The sharp dips in the LISA response to scalar waves measured in the three-arm 

Michelson mode provide an essential distinguishing feature between the scalar and GR 

polarizations (See Fig. 23).  A dramatic drop in signal strength at four locations in LISA’s orbit 

would indicate the presence of a scalar polarized gravitational wave.  Moreover, the location of 

signal losses provides information about the source direction.  Comparing signal response 

fluctuations in the two-arm Michelson mode with those measured in the three-arm Michelson 

mode will provide greater precision in the determination of polarization and source direction.   
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Figure 24: The three-arm Sagnac response functions for the scalar and averaged GR polarizations 
propagating from the galactic center. 
 

The orbital variations in response displayed in the three-arm Sagnac mode are similar to 

those produced in the two-arm Michelson mode; however, the scalar response exhibits a 

significant enhancement in magnitude.  The Sagnac mode provides improved scalar response 

because the lengths of the arms are summed rather than subtracted from one another.  

To examine the LISA response to gravitational waves of a particular frequency 

originating from the direction of the galactic center, data from the low frequency end of the three 

dimensional plots were converted to polar form.  The magnitude of the response was scaled by a 

factor of 100 before its logarithm was computed so that the logarithm would be positive and then 

plotted as the radial coordinate of a polar plot.  The angular coordinate in the polar plots 

corresponds to the orbital position of LISA in the heliocentric frame.  Two polar graphs were 

created to display the response functions for GR polarizations and the scalar polarization for each 

mode of data collection.  This representation of the response as a function of orbital position 
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provides characteristic patterns that distinguish each polarization and mode combination.  The 

plots are presented as Figures 25 and 26. 

  

 

 

Figure 25:  The response functions calculated with respect to the polarizations predicted by GR for 
four different modes of data collection. 
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Figure 26:  The response functions calculated with respect to the scalar polarization for four 
different modes of data collection. 
 

It is important to note that the response functions were generated assuming that the three 

arms of LISA are of equal length and the original distance between pairs of spacecraft is very 

precisely known.  The study published by LHH presents the argument that assuming the arms are 

of equal and known length will lead to response functions that are accurate first order 

representations of the actual unequal arm design of the LISA detector.  The approximation is 

appropriate for this study, as it is mainly concerned with comparing the LISA response functions 

generated with respect to the GR and scalar polarizations.   
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Conclusions 

 

The primary goal of this study was to determine if a gravitational wave of scalar 

polarization with sufficient amplitude could be detected and distinguished from the plus and 

cross polarizations.  The results of the study indicate that LISA will be able to detect and identify 

the scalar polarization provided the amplitude of gravitational waves exhibiting the scalar 

polarization is comparable to the amplitude of gravitational waves exhibiting GR polarizations.  

Additionally, the results show that a comparison of the variations in responses measured by 

several data collection modes will indicate the direction of the source.  When LISA becomes 

operational, variances in the strength of a detected signal may be compared to signature features 

of the response functions, such as the number of dips and their relative sharpness, in order to 

determine the propagation direction and polarization of the measured gravitational wave.  These 

results will provide input for future researchers to determine the optimal data collection method 

to detect gravitational waves of a given polarization, frequency, and source direction and may 

also be used to develop algorithms to identify the polarizations and directionality of gravitational 

waves from data transmitted from the detector.   
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Appendix A 

 

A major task in developing the response function was to describe the gravitational wave 

in the LISA frame.  The challenge in determining the description of the gravitational wave in the 

LISA frame resides in the fact that LISA’s orientation relative to the source changes as it orbits 

the sun.  Several orbital parameters outlined in the Pre-phase A Report [7] developed by NASA 

made it possible to include the orbital dynamics in the mathematical model constructed within 

this study.  The following parameters were included in the model. 

 First, the plane formed by the three spacecraft forms a 60 degree angle with the x-y plane 

of the heliocentric frame (See Fig. A1).  Secondly, the equilateral triangle formed by the 

spacecraft rotates 360 degrees clockwise about the z axis of the LISA frame as it follows earth in 

one revolution about the sun (See Fig. A1). 

 

 

Figure A1: An illustration of the 60 degree inclination to the plane of the ecliptic, and the 
clockwise rotation of LISA over the period of the orbit [10]. 
 

 

Third, the orbital position of LISA has been divided into days, with day zero arbitrarily chosen 

such that the x axis of the LISA frame parallels the x axis of the heliocentric frame.  The x axis 

of the heliocentric frame points from the sun to the First Point of Aries. 
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Figure A2:  The LISA frame at its starting point in its orbit about the sun.   

  

 Five rotations are used to transform from the descriptions of the gravitational wave in the 

source frame to the description of the gravitational wave in the LISA frame.  Each rotation is 

described in terms of the polar angles θ and φ defined in the heliocentric frame (See Fig. A2).  

The first two rotations bring the source frame into the heliocentric frame, while the last three 

rotations transform between the heliocentric frame and the LISA frame. 

 The y axis of the source frame is assumed to be coplanar with the z axis of the 

heliocentric frame.  (Note: Any adverse implications of this assumption are nullified by 

averaging the response over the plus and cross polarizations; and the assumption has no effect on 

the calculation of the response with respect to the scalar polarization due to the symmetric 

properties of the strain pattern.)   The rotations are listed in order in Table A1. 
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Rotation Axis of Rotation Angle Subtended

R1 X π−θ 

R2 Z π/2−φ 

R3 Z 2πt/365 

R4 X π/3 

R5 Z -2πt/365 

Table A1:  The first two rotations listed are used to convert the source frame into the heliocentric 
frame.  The remaining three rotations convert to the LISA frame.  Here the variable t represents 
the number of days elapsed in LISA’s orbit about the sun.   

 
 
Rotations about the x and z axes are provided by the following equations. 
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Here ψ is the angle subtended in the rotation.  By convention, the wave propagates in the Z 

direction of the source frame.  So the propagation direction of the gravitational wave in the LISA 

frame (κLISA), is given by equation A3.   
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The metric describing the gravitational wave represents a tensor, so the original matrix must also 

be multiplied by the transpose of each rotation.   

}][{ 5432112345
ttttt RRRRRHRRRRRH

sourceLISA µνµν =   (A4) 

 

The perturbation matrix in the LISA frame is therefore written as: 

 

    )cos(}][{ 5432112345 δθµνµν += ARRRRRHRRRRRh ttttt
sourceLISA

        (A5) 

These rotations are construction on the assumption that the initial orbital position of LISA is on 

the y-axis of the heliocentric frame. 
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Appendix B 

The following MATLAB® code calculates the response functions averaged over all 

possible source directions. 

function Z = AverageAllSky () 
% Function that will determine the LISA response for plus, cross, and 
% scalar polarizations in an all sky average.  The program also allows for a 
% linear combination of cross and plus, and a linear combination of cross 
% and scalar polarizations. 
 
% Begin clock to measure the program run-time. 
tic 
 
% The perturbation matricies 
hcross = [0 1 0; 1 0 0; 0 0 0]; 
hplus = [1 0 0; 0 -1 0; 0 0 0]; 
hscalar = [1 0 0; 0 1 0; 0 0 0]; 
 
% The Mixfactor is the coefficient in a linear combination of cross and 
% scalar polarizations.  For example: Mixfactor = .1 would mean that the 
% matrix element of the calculations consists of hx + .1*hs, where hx is 
% the matrix element for the cross polarization and hs is the matrix 
% element for the scalar polarization. 
Mixfactor = .1; 
 
% tstep gives the sample size in days. For example: tstep =1 then the 
% response will be calculated for each day of its orbit. 
tstep = 10; 
tdays = [0:tstep:365]; 
 
% The range of frequencies 
uu = 2*pi*(10.^(-4:.01:1.2)); 
 
% Matricies used to store values 
[r,c] = size (uu); 
[rr,cc] = size (tdays); 
 
A = ones(c,cc); 
B = A; 
C = A; 
D = A; 
E = A; 
F = A; 
 
ScalarA = A; 
ScalarB = A; 
ScalarC = A; 
ScalarD = A; 
ScalarE = A; 
ScalarF = A; 
 
ComboA = A; 
ComboB = A; 
ComboC = A; 
ComboD = A; 
ComboE = A; 
ComboF = A; 
 
% The values associated with alpha in the LISA frame and store in 
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% memory for later use.  Alpha is the angle between an arm of LISA and the 
% x-axis of the LISA frame.  
csa1=cos(pi/12); 
csa1S=csa1^2; 
csa2=cos(5*pi/12); 
csa2S=csa2^2; 
csa3=cos(3*pi/4); 
csa3S=csa3^2; 
sna1=sin(pi/12); 
sna1S=sna1^2; 
sna2=sin(5*pi/12); 
sna2S=sna2^2; 
sna3=sin(3*pi/4); 
sna3S=sna3^2; 
 
% Counting numbers used to designate where data is stored. 
n=0; 
N=0; 
nn=0; 
 
% The ranges and step sizes for theta, phi, and epsilon. 
theta1 = [pi/16:(pi/8):(11*pi/16)]; 
[rtheta, ctheta] = size (theta1); 
 
phi1 = [pi/16:(pi/8):(31*pi/16)]; 
[rphi, cphi] = size (phi1); 
 
epsilonstep = 1/16; 
epsilon1 = [((pi*epsilonstep)/2):(pi*epsilonstep):((2/epsilonstep)-1)*pi... 
        *(epsilonstep/2)]; 
[reps,ceps] = size (epsilon1); 
 
% The final rotation that orients the LISA frame sixty degrees 
% relative to the plane of the ecliptic. 
RorbitTilt = [1 0  0; 0 cos(pi/3) sin(pi/3); 0 -sin(pi/3) cos(pi/3)]; 
 
 
% A series of nested loops numerically evaluates the response function. 
 
for theta = theta1 
    
    % The values associated with theta including the first rotation  
    % required to translate between the source frame and the heliocentric frame. 
    cth= cos(theta); 
    sth= sin(theta); 
    RTheta = [1 0  0; 0 cos(pi-theta) sin(pi-theta); 0 -sin(pi-theta)... 
            cos(pi-theta)]; 
     
    for phi = phi1 
         
        % Each value of nn corresponds to a unique source location. 
        nn= nn+1; 
                 
        % The values used in the calculation of the 
        % response function that include the variable phi.   
        muone= -sth*cos(phi-pi/12);  
        mutwo= -sth*cos(phi-5*pi/12); 
        muthree= -sth*cos(phi-3*pi/4); 
         
        % The second rotation required to translate between the 
        % source and heliocentric frame. 
        RPhi = [cos(pi/2-phi) sin(pi/2-phi) 0; -sin(pi/2-phi) cos(pi/2-phi)... 
                0; 0 0 1]; 
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        % The perturbation matrices in the heliocentric frame. 
        hHcross = RPhi'*RTheta'*hcross*RTheta*RPhi; 
        hHplus = RPhi'*RTheta'*hplus*RTheta*RPhi; 
        hHscalar = RPhi'*RTheta'*hscalar*RTheta*RPhi; 
         
        % Clear the matrices used to temporarily store the response function 
        % calculated for a particular value of theta and phi. 
        A = zeros(c,cc); 
        B = A; 
        C = A; 
        D = A; 
        E = A; 
        F = A; 
 
        ScalarA = A; 
        ScalarB = A; 
        ScalarC = A; 
        ScalarD = A; 
        ScalarE = A; 
        ScalarF = A; 
 
        ComboA = A; 
        ComboB = A; 
        ComboC = A; 
        ComboD = A; 
        ComboE = A; 
        ComboF = A; 
 
        % Reset counting variable used to indicate frequency. 
        N=0; 
         
            for u = uu 
                 
                % N and n are counting numbers that control the storage of  
                % values in Matrices A, B, and C. N corresponds to the 
                % frequency and n corresponds to the orbital position. 
                N = N + 1;  
                n=0; 
                 
                for t = tdays 
                     
                    n=n+1; 
                     
                    % Rotation matrices that account for LISA's orbit about 
                    % the sun. 
                    RphiLISA = [cos((t*2*pi)/365) sin((t*2*pi)/365) 0;... 
                            -sin((t*2*pi)/365) cos((t*2*pi)/365) 0; 0 0 1]; 
                    RbackRotate = [cos(-(t*2*pi)/365) sin(-(t*2*pi)/365) 0;... 
                            -sin(-(t*2*pi)/365) cos(-(t*2*pi)/365) 0; 0 0 1]; 
                     
                    % The perturbation matrices described in the 
                    % LISA frame. Three Euler angles are used to transform 
                    % the perturbation matrices described in the 
                    % heliocentric frame to those described in the LISA 
                    % frame.  
                    hLcross = RbackRotate*RorbitTilt*RphiLISA*hHcross*RphiLISA'... 
                        *RorbitTilt'*RbackRotate'; 
                    hLplus  = RbackRotate*RorbitTilt*RphiLISA*hHplus*RphiLISA'... 
                        *RorbitTilt'*RbackRotate'; 
                    hLscalar= RbackRotate*RorbitTilt*RphiLISA*hHscalar*RphiLISA'... 
                        *RorbitTilt'*RbackRotate'; 
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                    % The time independent components associated with each 
                    % response function evaluated. 
                    CrossMet1= .5*((hLcross(1,1)*csa1S) + (hLcross(1,2)*csa1*sna1)... 
                        + (hLcross(2,1)*sna1*csa1) + (hLcross(2,2)*sna1S));     
                    CrossMet2= .5*((hLcross(1,1)*csa2S) + (hLcross(1,2)*csa2*sna2)... 
                        + (hLcross(2,1)*sna2*csa2) + (hLcross(2,2)*sna2S)); 
                    CrossMet3= .5*((hLcross(1,1)*csa3S) + (hLcross(1,2)*csa3*sna3)... 
                        + (hLcross(2,1)*sna3*csa3) + (hLcross(2,2)*sna3S)); 
                     
                    PlusMet1= .5*((hLplus(1,1)*csa1S) + (hLplus(1,2)*csa1*sna1)... 
                        + (hLplus(2,1)*sna1*csa1) + (hLplus(2,2)*sna1S)); 
                    PlusMet2= .5*((hLplus(1,1)*csa2S) + (hLplus(1,2)*csa2*sna2)... 
                        + (hLplus(2,1)*sna2*csa2) + (hLplus(2,2)*sna2S)); 
                    PlusMet3= .5*((hLplus(1,1)*csa3S) + (hLplus(1,2)*csa3*sna3)... 
                        + (hLplus(2,1)*sna3*csa3) + (hLplus(2,2)*sna3S)); 
                     
                    ScalarMet1=  .5*((hLscalar(1,1)*csa1S) + (hLscalar(1,2)*csa1... 
                        *sna1) + (hLscalar(2,1)*sna1*csa1) + (hLscalar(2,2)*sna1S)); 
                    ScalarMet2= .5*((hLscalar(1,1)*csa2S) + (hLscalar(1,2)... 
                        *csa2*sna2) + (hLscalar(2,1)*sna2*csa2)+(hLscalar(2,2)... 
                        *sna2S)); 
                    ScalarMet3= .5*((hLscalar(1,1)*csa3S) + (hLscalar(1,2)*csa3... 
                        *sna3) + (hLscalar(2,1)*sna3*csa3) + (hLscalar(2,2)*sna3S)); 
                     
                    % Resetting variables used in calculating the response 
                    % function to zero for the next iteration. 
                    DX1sum=0; 
                    DX2sum=0; 
                    DX3sum=0; 
                    DX12sum=0; 
                    DX123Msum=0; 
                    DX123Ssum=0; 
                     
                    DXScalar1sum=0; 
                    DXScalar2sum=0; 
                    DXScalar3sum=0; 
                    DXScalar12sum=0; 
                    DXScalarM123sum=0; 
                    DXScalarS123sum=0; 
                     
                    DXCombo1sum=0; 
                    DXCombo2sum=0; 
                    DXCombo3sum=0; 
                    DXCombo12sum=0; 
                    DXComboM123sum=0; 
                    DXComboS123sum=0; 
                     
                    % Averaging over epsilon accounts for rotation about 
                    % the third Euler angle required in transforming from 
                    % the source frame to the heliocentric frame. 
                    for epsilon = epsilon1 
                         
                        % This combination of the plus and cross metric 
                        % components accounts for the third rotation 
                        % mentioned in the comment on line 211 (directly 
                        % above epsilon for loop).         
                        metepsone = cos(2*epsilon)*CrossMet1 - sin(2*epsilon)... 
                            *PlusMet1; 
                        metepstwo = cos(2*epsilon)*CrossMet2 - sin(2*epsilon)... 
                            *PlusMet2; 
                        metepsthree = cos(2*epsilon)*CrossMet3 - sin(2*epsilon)... 
                            *PlusMet3; 
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                        % Combines the scalar polarization with the mixture 
                        % of GR plus and cross polarizations.   
                        ComboCrossScalar1 = metepsone + Mixfactor*ScalarMet1; 
                        ComboCrossScalar2 = metepstwo + Mixfactor*ScalarMet2; 
                        ComboCrossScalar3 = metepsthree + Mixfactor*ScalarMet3; 
                         
                        % Resetting values used in delta loop. 
                        DX1=0; 
                        DX2=0; 
                        DX3=0; 
                        DX12=0; 
                        DX123M=0; 
                        DX123S=0; 
                         
                        DXScalar1=0; 
                        DXScalar2=0; 
                        DXScalar3=0; 
                        DXScalar12=0; 
                        DXScalarM123=0; 
                        DXScalarS123=0; 
                         
                        DXCombo1=0; 
                        DXCombo2=0; 
                        DXCombo3=0; 
                        DXCombo12=0; 
                        DXComboM123=0; 
                        DXComboS123=0; 
                         
                        % Delta is the phase constant for the incident 
                        % wave. (kx-wt+delta) This portion of the program 
                        % finds the amplitude of the response.  The 
                        % response will vary depending upon the initial 
                        % phase of the gravitational wave. As the program 
                        % cycles through possible values for the initial 
                        % phase, it stores the maximum response. 
                        for delta = pi/32:pi/16:31*pi/32; 
                             
                            % f1, f2, and f3 include the time dependent parts for  

       % the response function. 

                            f1= ((sin(delta-muone*u)-sin(delta-u))/(u*(1-muone))... 
                                +(sin(u+delta)-sin(delta-muone*u))/(u*(1+muone))); 
                            f2= ((sin(delta-mutwo*u)-sin(delta-u))/(u*(1-mutwo))... 
                                +(sin(u+delta)-sin(delta-mutwo*u))/(u*(1+mutwo))); 
                            f3= ((sin(u*(1+muone)-delta)-sin(mutwo*u-delta))... 
                                /(u*(1-muthree))+(sin(u*(1-muone)+delta)... 
                                +sin(mutwo*u-delta))/(u*(1+muthree))); 
                             
                            % deltaX values corrospond to the change in length of 
                            % each arm. This combines the time independent  
                            % components with the time dependent component to  
                            % achieve the complete response of LISA to the  
                            % gravitational wave. X1 corresponds to L1, X2 to L2, 
                            % and so on. Similar calculations were computed for  
                            % the scalar response and the response to the 
                            % combination of scalar and GR polarizations. 
                            deltaX1= metepsone*f1; 
                            deltaX2= metepstwo*f2; 
                            deltaX3= metepsthree*f3; 
                             
                            % In order to calculate the response we must find the 
                            % value of delta that yields the maximum result  
                            % (indicating amplitude of response). 
                            if abs(deltaX1) > DX1 
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                                DX1 = abs(deltaX1); 
                            end 
                            if abs(deltaX2) > DX2 
                                DX2 = abs(deltaX2); 
                            end 
                            if abs(deltaX3) > DX3 
                                DX3 = abs(deltaX3); 
                            end 
                            if abs(deltaX1-deltaX2) > DX12 
                                DX12 = abs(deltaX1-deltaX2); 
                            end 
                            if abs(deltaX1+deltaX2-2*deltaX3) > DX123M 
                                DX123M = abs(deltaX1+deltaX2-2*deltaX3); 
                            end 
                            if abs(deltaX1+deltaX2+deltaX3) > DX123S 
                                DX123S = abs(deltaX1+deltaX2+deltaX3); 
                            end 
                             
                            deltaXScalar1 = ScalarMet1*f1; 
                            deltaXScalar2 = ScalarMet2*f2; 
                            deltaXScalar3 = ScalarMet3*f3; 
                             
                            if abs(deltaXScalar1) > DXScalar1 
                                 
                                DXScalar1 = abs(deltaXScalar1); 
                            end 
                            if abs(deltaXScalar2) > DXScalar2 
                                DXScalar2 = abs(deltaXScalar2); 
                            end 
                            if abs(deltaXScalar3) > DXScalar3 
                                DXScalar3 = abs(deltaXScalar3); 
                            end 
                            if abs(deltaXScalar1-deltaXScalar2)> DXScalar12 
                                DXScalar12 = abs(deltaXScalar1-deltaXScalar2); 
                            end 
                            if abs (deltaXScalar1+deltaXScalar2-2*deltaXScalar3)... 
                                    > DXScalarM123 
                                DXScalarM123 = abs (deltaXScalar1+deltaXScalar2... 
                                    -2*deltaXScalar3); 
                            end 
                            if abs (deltaXScalar1+deltaXScalar2+deltaXScalar3)... 
                                    > DXScalarS123 
                                DXScalarS123 = abs (deltaXScalar1+deltaXScalar2... 
                                    +deltaXScalar3); 
                            end 
                             
                            deltaXCombo1 = ComboCrossScalar1*f1; 
                            deltaXCombo2 = ComboCrossScalar2*f2; 
                            deltaXCombo3 = ComboCrossScalar3*f3; 
                             
                            if abs(deltaXCombo1) > DXCombo1 
                                DXCombo1 = abs(deltaXCombo1); 
                            end 
                            if abs(deltaXCombo2) > DXCombo2 
                                DXCombo2 = abs(deltaXCombo2); 
                            end 
                            if abs(deltaXCombo3) > DXCombo3 
                                DXCombo3 = abs(deltaXCombo3); 
                            end 
                            if abs(deltaXCombo1-deltaXCombo2)> DXCombo12 
                                DXCombo12 = abs(deltaXCombo1-deltaXCombo2); 
                            end 
                            if abs (deltaXCombo1+deltaXCombo2-2*deltaXCombo3)... 
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                                    > DXComboM123 
                                DXComboM123 = abs (deltaXCombo1+deltaXCombo2... 
                                    -2*deltaXCombo3); 
                            end 
                            if abs (deltaXCombo1+deltaXCombo2+deltaXCombo3)... 
                                    > DXComboS123 
                                DXComboS123 = abs (deltaXCombo1+deltaXCombo2+... 
                                    deltaXCombo3); 
                            end 
                             
                        end % End delta loop. 
                         
                        % Add the response functions for each arm and  
                        % each combination of arms.          
                        DX12sum = DX12sum + abs(DX12);      
                        DX1sum = DX1sum + abs(DX1); 
                        DX2sum = DX2sum + abs(DX2); 
                        DX3sum = DX3sum + abs(DX3); 
                        DX123Msum = DX123Msum + abs(DX123M); 
                        DX123Ssum = DX123Ssum + abs(DX123S); 
                         
                        DXScalar1sum=DXScalar1sum + abs(DXScalar1); 
                        DXScalar2sum=DXScalar2sum + abs(DXScalar2); 
                        DXScalar3sum=DXScalar3sum + abs(DXScalar3); 
                        DXScalar12sum=DXScalar12sum + DXScalar12; 
                        DXScalarM123sum=DXScalarM123sum + DXScalarM123; 
                        DXScalarS123sum=DXScalarS123sum + DXScalarS123; 
                         
                        DXCombo1sum=DXCombo1sum + abs(DXCombo1); 
                        DXCombo2sum=DXCombo2sum + abs(DXCombo2); 
                        DXCombo3sum=DXCombo3sum + abs(DXCombo3); 
                        DXCombo12sum=DXCombo12sum + DXCombo12; 
                        DXComboM123sum=DXComboM123sum + DXComboM123; 
                        DXComboS123sum=DXComboS123sum + DXComboS123; 
                         
                    end % End epsilon loop 
                     
                    % Stores the sum of the responses for each angle sampled. 
                    A(N,n) = DX1sum;  
                    B(N,n) = DX2sum; 
                    C(N,n) = DX3sum; 
                    D(N,n) = DX12sum; 
                    E(N,n) = DX123Msum; 
                    F(N,n) = DX123Ssum; 
                     
                    ScalarA(N,n) = DXScalar1sum; 
                    ScalarB(N,n) = DXScalar2sum; 
                    ScalarC(N,n) = DXScalar3sum; 
                    ScalarD(N,n) = DXScalar12sum; 
                    ScalarE(N,n) = DXScalarM123sum; 
                    ScalarF(N,n) = DXScalarS123sum; 
                     
                    ComboA(N,n) = DXCombo1sum; 
                    ComboB(N,n) = DXCombo2sum; 
                    ComboC(N,n) = DXCombo3sum; 
                    ComboD(N,n) = DXCombo12sum; 
                    ComboE(N,n) = DXComboM123sum; 
                    ComboF(N,n) = DXComboS123sum; 
                     
                end %end t loop 
        end %end u loop 
         
        % In order to achieve an equally weighted average over all possible 
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        % source directions some weighting factors had to be included.  The 
        % sin (theta) factor accounts for the fact that on a (lat, long) 
        % grid, such as the (theta, phi) coordinates chosen, there will be 
        % more functions sampled near the poles than near the equatorial 
        % plane.   
        aA(:,:,nn) = A*sth; 
        aB(:,:,nn) = B*sth; 
        aC(:,:,nn) = C*sth; 
        aD(:,:,nn) = D*sth; 
        aE(:,:,nn) = E*sth; 
        aF(:,:,nn) = F*sth; 
         
        aScalarA(:,:,nn) = ScalarA*sth; 
        aScalarB(:,:,nn) = ScalarB*sth; 
        aScalarC(:,:,nn) = ScalarC*sth; 
        aScalarD(:,:,nn) = ScalarD*sth; 
        aScalarE(:,:,nn) = ScalarE*sth; 
        aScalarF(:,:,nn) = ScalarF*sth; 
         
        aComboA(:,:,nn) = ComboA*sth; 
        aComboB(:,:,nn) = ComboB*sth; 
        aComboC(:,:,nn) = ComboC*sth; 
        aComboD(:,:,nn) = ComboD*sth; 
        aComboE(:,:,nn) = ComboE*sth; 
        aComboF(:,:,nn) = ComboF*sth; 
         
    end % End phi loop 
     
end % End theta loop 
   
% Sum the response functions and divide by the respective number of 
% components summed. Note the three dimensional matrix must first be summed 
% along one axis, then the other. 
RTaA = sum(aA,3)/(4*pi*ctheta*cphi*ceps); 
RTaB = sum(aB,3)/(4*pi*ctheta*cphi*ceps); 
RTaC = sum(aC,3)/(4*pi*ctheta*cphi*ceps); 
RTaD = sum(aD,3)/(4*pi*ctheta*cphi*ceps); 
RTaE = sum(aE,3)/(4*pi*ctheta*cphi*ceps); 
RTaF = sum(aF,3)/(4*pi*ctheta*cphi*ceps); 
 
RTaScalarA = sum(aScalarA,3)/(4*pi*ctheta*cphi*ceps); 
RTaScalarB = sum(aScalarB,3)/(4*pi*ctheta*cphi*ceps); 
RTaScalarC = sum(aScalarC,3)/(4*pi*ctheta*cphi*ceps); 
RTaScalarD = sum(aScalarD,3)/(4*pi*ctheta*cphi*ceps); 
RTaScalarE = sum(aScalarE,3)/(4*pi*ctheta*cphi*ceps); 
RTaScalarF = sum(aScalarF,3)/(4*pi*ctheta*cphi*ceps); 
 
RTaComboA = sum(aComboA,3)/(4*pi*ctheta*cphi*ceps); 
RTaComboB = sum(aComboB,3)/(4*pi*ctheta*cphi*ceps); 
RTaComboC = sum(aComboC,3)/(4*pi*ctheta*cphi*ceps); 
RTaComboD = sum(aComboD,3)/(4*pi*ctheta*cphi*ceps); 
RTaComboE = sum(aComboE,3)/(4*pi*ctheta*cphi*ceps); 
RTaComboF = sum(aComboF,3)/(4*pi*ctheta*cphi*ceps); 
 
% Sums along the second axis, and divides by the number of elements summed. 
RTaA = sum(RTaA,2)/cc; 
RTaB = sum(RTaB,2)/cc; 
RTaC = sum(RTaC,2)/cc; 
RTaD = sum(RTaD,2)/cc; 
RTaE = sum(RTaE,2)/cc; 
RTaF = sum(RTaF,2)/cc; 
 
RTaScalarA = sum(RTaScalarA,2)/cc; 
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RTaScalarB = sum(RTaScalarB,2)/cc; 
RTaScalarC = sum(RTaScalarC,2)/cc; 
RTaScalarD = sum(RTaScalarD,2)/cc; 
RTaScalarE = sum(RTaScalarE,2)/cc; 
RTaScalarF = sum(RTaScalarF,2)/cc; 
 
RTaComboA = sum(RTaComboA,2)/cc; 
RTaComboB = sum(RTaComboB,2)/cc; 
RTaComboC = sum(RTaComboC,2)/cc; 
RTaComboD = sum(RTaComboD,2)/cc; 
RTaComboE = sum(RTaComboE,2)/cc; 
RTaComboF = sum(RTaComboF,2)/cc; 
 
% End program run time and display in the command prompt. 
toc 
 
% Plot one figure to indicate the program has finished running and to 
% provide an initial plot to verify results.   
a = log10(uu); 
figure 
plot(a,log10((RTaE')/2)) 
title ('Averaged Michelson Three Arm Response') 
 
% Save the variable space so additional plots can be generated with the data 
% without rerunning the program.  
save ('AllSky02MAY'); 
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Appendix C 

The following MATLAB® code calculates the response functions with respect to gravitational 

waves originating in the direction of the galactic center. 

function Z = ThreeDplots () 
% Function that will determine the LISA response for plus, cross, and 
% scalar polarizations originating from the galactic center.  The resulting  
% three dimensional surface plots illustrate the instrument response with  
% respect to orbital position and frequency. The program allows for a 
% linear combination of cross and plus, and a linear combination of cross 
% and scalar polarizations. 
 
% Begin clock to measure the program run-time. 
tic 
 
% The perturbation matricies. 
hcross = [0 1 0; 1 0 0; 0 0 0]; 
hplus = [1 0 0; 0 -1 0; 0 0 0]; 
hscalar = [1 0 0; 0 1 0; 0 0 0]; 
 
% The Mixfactor is the coefficient in a linear combination of cross and 
% scalar polarizations.  For example: Mixfactor = .1 would mean that the 
% matrix element of the calculations consists of hx + .1*hs, where hx is 
% the matrix element for the cross polarization and hs is the matrix 
% element for the scalar polarization. 
Mixfactor = .1; 
 
% tstep gives the sample size in days. For example: tstep =1 then the 
% response will be calculated for each day of its orbit. 
tstep = 2; 
tdays = [0:tstep:365]; 
% Establishes the range of frequencies 
uu = 2*pi*(10.^(-4:.01:.4)); 
 
% Generates matricies to store values 
[r,c] = size (uu); 
[rr,cc] = size (tdays); 
 
A = ones(c,cc); 
B = A; 
C = A; 
D = A; 
E = A; 
F = A; 
 
ScalarA = A; 
ScalarB = A; 
ScalarC = A; 
ScalarD = A; 
ScalarE = A; 
ScalarF = A; 
 
ComboA = A; 
ComboB = A; 
ComboC = A; 
ComboD = A; 
ComboE = A; 
ComboF = A; 
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% Counting numbers used to designate where data is stored. 
n=0; 
N=0; 
 
% The values associated with alpha in the LISA frame and store in 
% memory for later use.  Alpha is the angle between an arm of LISA and the 
% x-axis of the LISA frame.  
csa1=cos(pi/12); 
csa1S=csa1^2; 
csa2=cos(5*pi/12); 
csa2S=csa2^2; 
csa3=cos(3*pi/4); 
csa3S=csa3^2; 
sna1=sin(pi/12); 
sna1S=sna1^2; 
sna2=sin(5*pi/12); 
sna2S=sna2^2; 
sna3=sin(3*pi/4); 
sna3S=sna3^2; 
 
% The ranges and step size for epsilon. 
epsilonstep = 1/32; 
epsilon1 = [((pi*epsilonstep)/2):(pi*epsilonstep):((2/epsilonstep)-1)*pi*... 
        (epsilonstep/2)]; 
[reps,ceps] = size (epsilon1); 
 
% Rotation matrix for theta 
RorbitTilt = [1 0  0; 0 cos(pi/3) sin(pi/3); 0 -sin(pi/3) cos(pi/3)]; 
 
% Value for theta indicating the direction of the galactic center.   
theta = 1.6675; 
% Calculates sin and cosine once and stores the values to optimize 
% the program. 
cth= cos(theta);  
sth= sin(theta); 
          
% The rotation matrix for theta.  It rotates (pi-theta) about the x 
% axis. 
RTheta = [1 0  0; 0 cos(pi-theta) sin(pi-theta); 0 -sin(pi-theta) cos(pi-theta)]; 
 
% Value for phi indicating the direction of the galactic center. 
phi = 4.6572; 
 
% Optimizing the calculations requiring spatial angles theta and phi. 
% Mu values are necessary in calculating the time dependant 
% component of the the response. 
muone= -sth*cos(phi-pi/12);   
mutwo= -sth*cos(phi-5*pi/12); 
muthree= -sth*cos(phi-3*pi/4); 
 
% The rotation matrix for phi.  It rotates pi/2-phi about the 
% z axis. 
RPhi = [cos(pi/2-phi) sin(pi/2-phi) 0; -sin(pi/2-phi) cos(pi/2-phi) 0; 0 0 1]; 
         
% Generating the perturbation matrices in the heliocentric frame through the 
% rotations about theta and phi. 
hHcross = RPhi'*RTheta'*hcross*RTheta*RPhi; 
hHplus = RPhi'*RTheta'*hplus*RTheta*RPhi; 
hHscalar = RPhi'*RTheta'*hscalar*RTheta*RPhi; 
 
% The loop used to calculate the response and average over all sky. u = uu 
% cycles the calculations for a range of frequencies 
for u = uu 
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    % N is the counting number that controls the storage of response 
    % function values for each new frequency. 
    N = N + 1;  
    % n is the counting number that controls the storage of response 
    % function values for each new orbital position. 
    n=0; 
    
    % The t loop calculates ans stores the response of the detector for each 
    % point in its orbit about the sun. 
    for t = tdays 
         
        % Increment the value of n. 
        n=n+1; 
         
        % The rotation matrices that depend upon LISA's orbital position. 
        RphiLISA = [cos((t*2*pi)/365) sin((t*2*pi)/365) 0; -sin((t*2*pi)/365)... 
                cos((t*2*pi)/365) 0; 0 0 1]; 
        RbackRotate = [cos(-(t*2*pi)/365) sin(-(t*2*pi)/365) 0; -sin(-(t*2*pi)/365)... 
                cos(-(t*2*pi)/365) 0; 0 0 1]; 
     
        % The perturbation matrices calculated in the LISA frame. 
        hLcross = RbackRotate*RorbitTilt*RphiLISA*hHcross*RphiLISA'*RorbitTilt'*... 
            RbackRotate'; 
        hLplus  = RbackRotate*RorbitTilt*RphiLISA*hHplus*RphiLISA'*RorbitTilt'*... 
            RbackRotate'; 
        hLscalar= RbackRotate*RorbitTilt*RphiLISA*hHscalar*RphiLISA'*RorbitTilt'*... 
            RbackRotate'; 
               
        % The time independent components associated with each 
        % response function evaluated. 
        CrossMet1= .5*((hLcross(1,1)*csa1S) + (hLcross(1,2)*csa1*sna1) + ... 
            (hLcross(2,1)*sna1*csa1) + (hLcross(2,2)*sna1S));     
        CrossMet2= .5*((hLcross(1,1)*csa2S) + (hLcross(1,2)*csa2*sna2) + ... 
            (hLcross(2,1)*sna2*csa2) + (hLcross(2,2)*sna2S)); 
        CrossMet3= .5*((hLcross(1,1)*csa3S) + (hLcross(1,2)*csa3*sna3) + ... 
            (hLcross(2,1)*sna3*csa3) + (hLcross(2,2)*sna3S)); 
         
        PlusMet1= .5*((hLplus(1,1)*csa1S) + (hLplus(1,2)*csa1*sna1) + ... 
            (hLplus(2,1)*sna1*csa1) + (hLplus(2,2)*sna1S)); 
        PlusMet2= .5*((hLplus(1,1)*csa2S) + (hLplus(1,2)*csa2*sna2) + ... 
            (hLplus(2,1)*sna2*csa2) + (hLplus(2,2)*sna2S)); 
        PlusMet3= .5*((hLplus(1,1)*csa3S) + (hLplus(1,2)*csa3*sna3) + ... 
            (hLplus(2,1)*sna3*csa3) + (hLplus(2,2)*sna3S)); 
         
        ScalarMet1=  .5*((hLscalar(1,1)*csa1S) + (hLscalar(1,2)*csa1*sna1) + ... 
            (hLscalar(2,1)*sna1*csa1) + (hLscalar(2,2)*sna1S)); 
        ScalarMet2= .5*((hLscalar(1,1)*csa2S) + (hLscalar(1,2)*csa2*sna2) + ... 
            (hLscalar(2,1)*sna2*csa2) + (hLscalar(2,2)*sna2S)); 
        ScalarMet3= .5*((hLscalar(1,1)*csa3S) + (hLscalar(1,2)*csa3*sna3) + ... 
            (hLscalar(2,1)*sna3*csa3) + (hLscalar(2,2)*sna3S)); 
         
        % Resetting variables used in calculating the response 
        % function to zero for the next iteration. 
        DX1sum=0; 
        DX2sum=0; 
        DX3sum=0; 
        DX12sum=0; 
        DX123Msum=0; 
        DX123Ssum=0; 
         
        DXScalar1sum=0; 
        DXScalar2sum=0; 
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        DXScalar3sum=0; 
        DXScalar12sum=0; 
        DXScalarM123sum=0; 
        DXScalarS123sum=0; 
         
        DXCombo1sum=0; 
        DXCombo2sum=0; 
        DXCombo3sum=0; 
        DXCombo12sum=0; 
        DXComboM123sum=0; 
        DXComboS123sum=0; 
         
        % Averaging over epsilon accounts for rotation about 
        % the third Euler angle required in transforming from 
        % the source frame to the heliocentric frame. 
        for epsilon = epsilon1 
             
            % Averaging over epsilon accounts for the rotation about the third  
            % Euler angle.            
            metepsone = cos(2*epsilon)*CrossMet1 - sin(2*epsilon)*PlusMet1; 
            metepstwo = cos(2*epsilon)*CrossMet2 - sin(2*epsilon)*PlusMet2; 
            metepsthree = cos(2*epsilon)*CrossMet3 - sin(2*epsilon)*PlusMet3; 
             
            ComboCrossScalar1 = metepsone + Mixfactor*ScalarMet1; 
            ComboCrossScalar2 = metepstwo + Mixfactor*ScalarMet2; 
            ComboCrossScalar3 = metepsthree + Mixfactor*ScalarMet3; 
             
            % Resetting values used in delta loop. 
            DX1=0; 
            DX2=0; 
            DX3=0; 
            DX12=0; 
            DX123M=0; 
            DX123S=0; 
             
            DXScalar1=0; 
            DXScalar2=0; 
            DXScalar3=0; 
            DXScalar12=0; 
            DXScalarM123=0; 
            DXScalarS123=0; 
             
            DXCombo1=0; 
            DXCombo2=0; 
            DXCombo3=0; 
            DXCombo12=0; 
            DXComboM123=0; 
            DXComboS123=0; 
             
            % Delta is the phase constant for the incident wave. (kx-wt+delta) 
            % This portion of the program finds the amplitude of the response. 
            % The response will vary depending upon the initial phase of the  
            % gravitational wave. As the program cycles through possible values 
            % for the initial phase, it stores the maximum response. 
            for delta = pi/32:pi/16:31*pi/32;  
                 
                % f1, f2, and f3 include the time dependent parts for the response  
                % function. 
                f1= ((sin(delta-muone*u)-sin(delta-u))/(u*(1-muone))+(sin(u+delta)... 
                    -sin(delta-muone*u))/(u*(1+muone))); 
                f2= ((sin(delta-mutwo*u)-sin(delta-u))/(u*(1-mutwo))+(sin(u+delta)... 
                    -sin(delta-mutwo*u))/(u*(1+mutwo))); 
                f3= ((sin(u*(1+muone)-delta)-sin(mutwo*u-delta))/(u*(1-muthree))... 
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                    +(sin(u*(1-muone)+delta)+sin(mutwo*u-delta))/(u*(1+muthree))); 
                 
                % deltaX values correspond to the change in length of 
                % each arm. This combines the time independent components  
                % with the time dependent component to achieve the complete  
                % response of LISA to the gravitational wave. 
                % X1 corresponds to L1, X2 to L2, and so on. 
                % Similar calculations were computed for the 
                % scalar response and the response to the 
                % combination of scalar and GR polarizations. 
                deltaX1= metepsone*f1; 
                deltaX2= metepstwo*f2; 
                deltaX3= metepsthree*f3; 
                 
                % In order to calculate the response we must find the delta that  
                % yields the maximum result (indicating amplitude of response). 
                if abs(deltaX1) > DX1 
                    DX1 = abs(deltaX1); 
                end 
                if abs(deltaX2) > DX2 
                    DX2 = abs(deltaX2); 
                end 
                if abs(deltaX3) > DX3 
                    DX3 = abs(deltaX3); 
                end 
                if abs(deltaX1-deltaX2) > DX12 
                    DX12 = abs(deltaX1-deltaX2); 
                end 
                if abs(deltaX1+deltaX2-2*deltaX3) > DX123M 
                    DX123M = abs(deltaX1+deltaX2-2*deltaX3); 
                end 
                if abs(deltaX1+deltaX2+deltaX3) > DX123S 
                    DX123S = abs(deltaX1+deltaX2+deltaX3); 
                end 
                 
                deltaXScalar1 = ScalarMet1*f1; 
                deltaXScalar2 = ScalarMet2*f2; 
                deltaXScalar3 = ScalarMet3*f3; 
                 
                if abs(deltaXScalar1) > DXScalar1 
                    DXScalar1 = abs(deltaXScalar1); 
                end 
                if abs(deltaXScalar2) > DXScalar2 
                    DXScalar2 = abs(deltaXScalar2); 
                end 
                if abs(deltaXScalar3) > DXScalar3 
                    DXScalar3 = abs(deltaXScalar3); 
                end 
                if abs(deltaXScalar1-deltaXScalar2)> DXScalar12 
                    DXScalar12 = abs(deltaXScalar1-deltaXScalar2); 
                end 
                if abs (deltaXScalar1+deltaXScalar2-2*deltaXScalar3) > DXScalarM123 
                    DXScalarM123 = abs (deltaXScalar1+deltaXScalar2-2*deltaXScalar3); 
                end 
                if abs (deltaXScalar1+deltaXScalar2+deltaXScalar3) > DXScalarS123 
                    DXScalarS123 = abs (deltaXScalar1+deltaXScalar2+deltaXScalar3); 
                end 
                 
                deltaXCombo1 = ComboCrossScalar1*f1; 
                deltaXCombo2 = ComboCrossScalar2*f2; 
                deltaXCombo3 = ComboCrossScalar3*f3; 
                 
                if abs(deltaXCombo1) > DXCombo1 
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                    DXCombo1 = abs(deltaXCombo1); 
                end 
                if abs(deltaXCombo2) > DXCombo2 
                    DXCombo2 = abs(deltaXCombo2); 
                end 
                if abs(deltaXCombo3) > DXCombo3 
                    DXCombo3 = abs(deltaXCombo3); 
                end 
                if abs(deltaXCombo1-deltaXCombo2)> DXCombo12 
                    DXCombo12 = abs(deltaXCombo1-deltaXCombo2); 
                end 
                if abs (deltaXCombo1+deltaXCombo2-2*deltaXCombo3) > DXComboM123 
                    DXComboM123 = abs (deltaXCombo1+deltaXCombo2-2*deltaXCombo3); 
                end 
                if abs (deltaXCombo1+deltaXCombo2+deltaXCombo3) > DXComboS123 
                    DXComboS123 = abs (deltaXCombo1+deltaXCombo2+deltaXCombo3); 
                end 
                 
            end % End delta loop. 
             
             
            % Add the responses for each arm and each combination of arms.          
            DX1sum = DX1sum + abs(DX1); 
            DX2sum = DX2sum + abs(DX2); 
            DX3sum = DX3sum + abs(DX3); 
            DX12sum = DX12sum + abs(DX12);               
            DX123Msum = DX123Msum + abs(DX123M); 
            DX123Ssum = DX123Ssum + abs(DX123S); 
                         
            DXScalar1sum=DXScalar1sum + abs(DXScalar1); 
            DXScalar2sum=DXScalar2sum + abs(DXScalar2); 
            DXScalar3sum=DXScalar3sum + abs(DXScalar3); 
            DXScalar12sum=DXScalar12sum + DXScalar12; 
            DXScalarM123sum=DXScalarM123sum + DXScalarM123; 
            DXScalarS123sum=DXScalarS123sum + DXScalarS123; 
             
            DXCombo1sum=DXCombo1sum + abs(DXCombo1); 
            DXCombo2sum=DXCombo2sum + abs(DXCombo2); 
            DXCombo3sum=DXCombo3sum + abs(DXCombo3); 
            DXCombo12sum=DXCombo12sum + DXCombo12; 
            DXComboM123sum=DXComboM123sum + DXComboM123; 
            DXComboS123sum=DXComboS123sum + DXComboS123; 
             
        end % End epsilon loop 
         
        % Stores the sum of the responses for each angle sampled. 
        A(N,n) = DX1sum;  
        B(N,n) = DX2sum; 
        C(N,n) = DX3sum; 
        D(N,n) = DX12sum; 
        E(N,n) = DX123Msum; 
        F(N,n) = DX123Ssum; 
         
        ScalarA(N,n) = DXScalar1sum; 
        ScalarB(N,n) = DXScalar2sum; 
        ScalarC(N,n) = DXScalar3sum; 
        ScalarD(N,n) = DXScalar12sum; 
        ScalarE(N,n) = DXScalarM123sum; 
        ScalarF(N,n) = DXScalarS123sum; 
         
        ComboA(N,n) = DXCombo1sum; 
        ComboB(N,n) = DXCombo2sum; 
        ComboC(N,n) = DXCombo3sum; 
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        ComboD(N,n) = DXCombo12sum; 
        ComboE(N,n) = DXComboM123sum; 
        ComboF(N,n) = DXComboS123sum; 
         
    end %end t loop 
     
end %end u loop 
 
% Divide by the number of samples summed to achieve an averaged GR 
% polarization (by averaging over epsilon).  
A = (1/ceps).*A; 
B = (1/ceps).*B; 
C = (1/ceps).*C; 
D = (1/ceps).*D; 
E = (1/ceps).*E; 
F = (1/ceps).*F; 
 
ScalarA = (1/ceps).*ScalarA; 
ScalarB = (1/ceps).*ScalarB; 
ScalarC = (1/ceps).*ScalarC; 
ScalarD = (1/ceps).*ScalarD; 
ScalarE = (1/ceps).*ScalarE; 
ScalarF = (1/ceps).*ScalarF; 
 
ComboA = (1/ceps).*ComboA; 
ComboB = (1/ceps).*ComboB; 
ComboC = (1/ceps).*ComboC; 
ComboD = (1/ceps).*ComboD; 
ComboE = (1/ceps).*ComboE; 
ComboF = (1/ceps).*ComboF; 
 
% Preparing to generate a loglog plot 
bA = log10 (A); 
bB = log10 (B); 
bC = log10 (C); 
bD = log10 (D); 
bE = log10 (E); 
bF = log10 (F); 
 
bSA=log10 (ScalarA); 
bSB=log10 (ScalarB); 
bSC=log10 (ScalarC); 
bSD=log10 (ScalarD); 
bSE=log10 (ScalarE); 
bSF=log10 (ScalarF); 
 
bCA = log10 (ComboA); 
bCB = log10 (ComboB); 
bCC = log10 (ComboC); 
bCD = log10 (ComboD); 
bCE = log10 (ComboE); 
bCF = log10 (ComboF); 
 
% Generate a plot to signify the program has finished running and allow the 
% user to verify an initial set of the results. 
figure 
surf (bA) 
 
% End program run time and display in the command prompt. 
toc 
% Saves variables for reference eliminating the need to run the program more  
% then once for a set of values. 
save ('ThreeDplots31MAR'); 
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